Determinant Structure of the Rational Solutions for the Painlevé IV Equation
نویسندگان
چکیده
Rational solutions for the Painlevé IV equation are investigated by Hirota bilinear formalism. It is shown that the solutions in one hierarchy are expressed by 3-reduced Schur functions, and those in another two hierarchies by Casorati determinant of the Hermite polynomials, or by special case of the Schur polynomials.
منابع مشابه
Determinant Structure of the Rational Solutions for the Painlevé II Equation
Two types of determinant representations of the rational solutions for the Painlevé II equation are discussed by using the bilinear formalism. One of them is a representation by the Devisme polynomials, and another one is a Hankel determinant representation. They are derived from the determinant solutions of the KP hierarchy and Toda lattice, respectively. PACS No.: 02.30.Hq, 03.30.Jr
متن کاملOn the Rational Solutions of q-Painlevé V Equation
We give an explicit determinant formula for a class of rational solutions of a q-analogue of the Painlevé V equation. The entries of the determinant are given by the continuous q-Laguerre polynomials.
متن کاملRational Solutions for the Discrete Painlevé II Equation
The rational solutions for the discrete Painlevé II equation are constructed based on the bilinear formalism. It is shown that they are expressed by the determinant whose entries are given by the Laguerre polynomials. Continuous limit to the Devisme polynomial representation of the rational solutions for the Painlevé II equation is also discussed.
متن کاملGenerating Function Associated with the Rational Solutions of the Painlevé II Equation
We consider the Hankel determinant representation for the rational solutions of the Painlevé II equation. We give an explicit formula for the generating function of the entries in terms of logarithmic derivative of the Airy function, which by itself is a particular solution of the Painlevé II equation.
متن کاملGenerating Function Associated with the Hankel Determinant Formula for the Solutions of the Painlevé IV Equation
We consider a Hankel determinant formula for generic solutions of the Painlevé IV equation. We show that the generating functions for the entries of the Hankel determinants are related to the asymptotic solution at infinity of the isomonodromic problem. Summability of these generating functions is also discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997